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Abstract: Recently, networked and cluster computation have become very popular for both signal 
processing and system simulation. A new language is ideally suited for parallel signal processing 
applications and system simulation since it allows the programmer to explicitly express the 
computations that can be performed concurrently. In addition, the new C based parallel language 
(ace C) for architecture-adaptive programming allows programmers to implement algorithms and 
system simulation applications on parallel architectures by providing them with the assurance that 
future parallel architectures will be able to run their applications with a minimum of modification. 
In this paper, we will focus on some hndamental features of ace C and present a signal 
processing application (FFT). 

1. Introduction 

Parallel and networked computer programming 
techniques have become popular and important 
computational tools for system simulation and signal 
processing[ 11. The essential elements of parallel 
programming are concurrent computation (threads) 
and communications (messages). ace  is based on 
the concept of structured parallel execution [2-31.. 
First the programmer designs a virtual architecture 
that reflects the spatial organization of an algorithm. 
An example is shown in Fig. 1. A virtual architecture 
may consist of groups or bundles of threads of 
execution. Second the application program reflects 
the temporal organization of the algorithm. The code 
defines what each thread performs, which together 
with the virtual architecture, defines the algorithm’s 
execution. ace allows the programmer to both 
envision the most logical architecture for the 
application and then implement the algorithm using 
that architecture.. The ace language allows the 
programmer to explicitly express that which can be 
performed concurrently. The purpose of ace is to 
facilitate the development of parallel programs by 
allowing programmers to explicitly describe the 
parallelism of an algorithm. 
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Fig. 1. Sample Virtual Architecuture 

1.1 a c e  micro-threads 

One of the essential elements of concurrent 
computations is micro-threads. The following ace 
program shows an example of micro-threads. 

threads A[ 1001; 

threads B[ IO]; 
A int av; 

B.( ... 
A.( int bv,cv; 

if (av==bv) cv=O ; 

1 
1 

Any C code is valid, except ‘goto’s. 

The difference between ace  and C is that while 
C has only one thread of execution, ace, may have 
many threads of execution. Each thread may be 
referenced by name and index. Parallelism in ace  is 
expressed by first defining a set of concurrently 
executable threads. A group of parallel threads can be 
viewed as a bundle of executing threads, a bundle of 
processes, or an array of processors. These three 
views will be treated synonymously. In ace, a bundle 
of threads is defined with the ‘threads’ statement. The 
statement “threads A[ lOO]” only declares the intent 
of the programmer to use 100 concurrent threads of 
executions named ‘A’ at some later point in the 
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code. The statement A int av allocates an integer 
‘av’ for each of the 100 threads of bundle ‘A’. 

1.2 a c e  micro-messages 

The second essential element of concurrent 
programming is micro-messages. Here is an example 
program showing communication. 

threads A[ 1001; 

threads B[ 1001; 

A,{ int av,cv; B int bv; 

av = A[$$i+l].cv ; /* get operation */ 

B[$$i/lO].bv += av ; /* put operation */ 

1 
/* Note: $$i is a threads unique ID */ 

1.3 Virtual Architecture 

One of the major advantages of ace  for signal 
processing is that it allows the programmer to create 
a virtual architecture for the algorithm. Fig 2-6 show 
various examples of virtual architectures and 
communications along with the a c e  code. 

threads X[ If ; 
threads { Z[21[2] Y[3][3] ; 

U L  

Fig. 2. Virtual Architecture 

threads A121 [2] ; 
A. { int a=$%; int b=3; int c; 

t 
c=a*b; 

Fig. 3. No Communications 

threads A[5 I2 J[5 1 23 ; 
a = .A[O][-l].c ; /* North */ 
a = A[O][l].c ; P South *I 

Fig. 4.2-D Relative Communications 

threads A[513]{511J ; 
a = A[O][S%ix[O]-l f.c : I* Nonh *I  
a =  A[O][%$is[O] +I].c ; /* South *! 
a += A[$Six[ I]-llfO].c : /* West */ 

Fig. 5. Absolute Communications 

Aggregate Operations ( f. -. &, 1, A. >?, <? ) 

thrcnds X[ I J : threads Z[1][2]  ) Y[3][3] ; 
Y.( int a; X int b; X.h+=a; f 

Fig. 6. Global Aggregate 

threads NODE[ 1 0001 
threads { CornerE3) ] CELL[2000] ; 

Fig. 7. Finite Element Example 

CELL 
@ Corner 

NUDE 
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2. FFT Example 

The fast Fourier transform, FFT, is widely used in 
science and engineering and is easily implemented on 
parallel architectures [4-51. Gupta and Kumar [6] 
presented the scalability analysis of an FFT algorithm 
for both mesh and hypercube architectures. 

The ace program shown in Appendix A 
performs a NxN 2-D FFT and inverse FFT on test 
data. This program performs N 1-D FFTs in parallel 
(partialFFT) in one dimension, transposes 
(Transpose) the transformed data, performs a second 
set of 1-D FFTs, and performs another transposes of 
the resulting transformed data. The I-D FFT results 
in shuffled data and is unshuffled (UnShuffle) 
immediately after the I-D FFT is performed. 

of threads to a N*N/2 I-D bundle of threads, thus the 
2-D FFT was actually performed on a 1-D 
architecture. 

The data was moved h m  the NxN 2-D bundle 

3. Summary 

This paper presented the fundamental concepts of a 
new C based parallel programming paradigm, ace C. 
The intent of ace is to allow a programmer to easily 
express the parallelism of an algorithm, allowing the 
compiler to more easily map the parallelism of that 
algorithm on to various parallel architectures. The 
ease of mapping facilitates the porting of programs 
and development /runtime environments to different 
architectures, promoting the development of new 
architectures. In addition, a parallel implementation 
of a 2-D FFT was presented. 
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Appendix A: Parallel FFT Program 

# include <stdio. aHr> 
# include <math.aHr> 

# define real 

# define twoPI 

# define PI 

# define size 512 
# define radius 3 
# define nproc2 (size*size) 
# define nproc (nproc2>>1) 

double 

( (double) 6.28318530717959) 

(twoPI/Z) 

struct complex { real rr,ii ; } ; 
typedef struct complex complex ; 

generic void ComplexAdd ( 
complex *C, 
complex *A, 
complex *B ) { 

C->rr = A->rr f B->rr ; 
C->ii = A->ii f B->ii ; 
1 

generic void Complexsub ( 
complex *C, 
complex *A, 
complex *B ) { 

C->rr = A->rr - B->rr ; 
C->ii = A->ii - B->ii ; 
1 

generic void ComplexMult ( 
complex *C, 
complex *A, 
complex *B 1 I 

real D; 
= A->rr*B->rr - A->ii*B->ii ; D 

C->ii = A->rr*B->ii + A->ii*B->rr ; 
C->rr = D ; 
I 

generic complex Init-FFT 
( int nxproc ) { 
real i; complex WS1 ; 
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/ *  initialize fft coefficients * /  

i = $$i%(nxproc>>l) ; 
WSl.rr = cos((twoPI*i)/nxproc) ; 
WSl.ii = sin((twoPI*i)/nxproc) ; 

return WS1 ; 
1 

generic(WorkSpace[])void partialFFT 
( complex A[2], 
complex *W1, 
int nxproc 1 { 

complex Al,A2 ; 
complex Zl,Z2,C ; 
int i , iproc, n ; 

iproc = $Si ; 
n = nxproc>>2 ; / *  nxproc/4 * /  
A1 = A[O] ; 
A2 = A[1] ; 

ComplexAdd ( &C, &A1 , &A2 ; 
ComplexSub ( &A2 , &Al, &A2 ) ; 
ComplexMult ( &A2, &A2 , W1) ; 
A l = C ;  
ComplexMult (Wl,Wl,Wl) ; 

for ( i=n ; i>O ; i>>=l ) { 

if ( (iproc&i) !=O ) 1 
Wl->rr = -W1->rr ; 
w1->ii = -Wl->ii ; 1 

Z1 = .WorkSpac’e[ il .A1 ; 
22 = .Workspace[-i] .A2 ; 
if ( (iproc&i)==O ) A2=Z1 ; 
else A1=Z2 ; 

ComplexAdd (&C, &All &A2) ; 
ComplexSub ( &A2, &A1 , &A2 ) ; 
ComplexMult .(&A2, &A2,W1) ; 
A l = C ;  
ComplexMult (Wl,Wl,Wl] ; 

Z1 = .Workspace[ i] .A1 ; 
22 = .Workspace[-i] .A2 ; 
if ( (iproc&i)==O ) A2=Z1 ; 
else A1=Z2 ; 

A[01 = A1 ; 
Ail] = A2 ; 

1 

generic(WorkSpace[]) void UnShuffle 
( complex A[2], int nxproc ) { 

complex A1,AZ ; 
complex Zl,Z2 ; 
int i, j, iproc, n ; 

iproc = $Si ; 
n = nxproc>>2 ; / *  nxproc/4 * /  
A1 = A[O] ; 
A2 = A[1] ; 

for( i=n, j=2; i>j; i>>=l, j<<=l ) { 

Z1 = .Workspace[ jl .A1 ; 
22 = . Workspace [-j 3 .A2 ; 
if ( (iproc&j)==O ) A2=Z1 ; 
else Al=Z2 ; 

Z1 = .Workspace[ i] .A1 ; 
22 = .Workspace[-i] .A2 ; 
if ( (iproc&i)==O ) A2=Z1 ; 
else Al=Z2 ; 

Z1 = .Workspace[ jl .A1 ; 
22 = .Workspace[-jl.A2 ; 
if ( (iproc&j)==O ) A2=Z1 ; 
else A1=Z2 ; 

Z1 = .Workspace[ 1l.Al ; 
22 = .Workspace[-11 .A2 ; 
if ( (iproc&l)==O ) A2=Z1 ; 
else Al=Z2 ; 

A[O] = A1 ; 
A[1] = A2 ; 

I 

generic(WorkSpace[]) void Transpose 
( complex A[2], int nxproc ) { 
complex Al,A2 ; 
complex Z1,22 ; 
int i, j , iproc, no, nl ; 

iproc = $Si ; 
no = nxproc>>l ; /*  nxproc/2 * /  
nl = nxproc>>l ; /*  nxproc/2 * /  
A1 = A[O] ; 
A2 = A[11 ; 

for(i=nl, j=1; j<nO; i<<=l, j<<=l) { 

Z1 = .Workspace[ j] .A1 ; 
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22 = .Workspace[-j].A2 ; 
if ( (iproc&j)==O ) A2=21 ; 
else A1=22 ; 

21 = .Workspace[ i].Al ; 
22 = .Workspace[-i] .A2 ; 
if ( (iproc&i)==O ) A2=Z1 ; 
else A1=22 ; 

21 = .WorkSpace[ j].Al ; 
22 = .Workspace[-j].A2 ; 
if ( (iproc&j)==O ) A2=21 ; 
else A1=22 ; 

Z1 = .Workspace[ i] .A1 ; 
22 = .Workspace[-il .A2 ; 
if ( (iproc&i)==O ) A2=21 ; 
else A1=22 ; 
A[O] = A1 ; 
A[1] = A2 ; 

generic (Workspace [I ) void FFT ( 
complex A[2] , 
complex *WS, 
int nxproc ) { 

complex W ; 

/ *  fft coefficients * /  
w = *ws ; 

/ *  X dimension fft * /  
partialFFT( A, &W, nxproc) ; 
/ *  X dimension unshuffle * /  
UnShuffle ( A, nxproc ) ; 
/ *  Transpose data * /  
Transpose ( A, nxproc ) ; 

/ *  fft coefficients * /  
w = *ws ; 

/ *  X dimension fft * /  
partialFFT( A, &W, nxproc) ; 
/ *  X dimension unshuffle * /  
UnShuffle ( A, nxproc ) ; 
/ *  Transpose data * /  
Transpose ( A, nxproc ) ; 

1 

generic (Workspace [I ) void invFFT ( 
complex A[2] , 
complex *WS, 

int nxproc ) { 
complex W ; int Size ; 

/ *  fft coefficients * /  
W.rr = WS->rr ; 
/ *  complex conjugate * /  
W.ii = -WS->ii ; 

/ *  X dimension fft * /  
partialFFT( A, &W, nxproc ) ; 
/ *  X dimension unshuffle * /  
UnShuffle ( A, nxproc ) ; 
/ *  Transpose data * /  
Transpose ( A, nxproc ) ; 

/ *  fft coefficients * /  
W.rr = WS->rr ; 
/ *  complex conjugate * /  
W.ii = -WS->ii ; 

/ *  X dimension fft * /  
partialFFT( A, &W, nxproc ) ; 
/ *  X dimension unshuffle * /  
UnShuffle ( A, nxproc 1 ; 
/ *  Transpose data * /  
Transpose ( A, nxproc ) ; 

/ *  normalize result * /  
Size = (nxproc*nxproc) ; 
A[O] .rr /= (Size) ; 
A[O].ii /= (Size) ; 
A[l].rr /= (Size) ; 
A[1] .ii /= (Size) ; 

1 

threads WorkSet [nproc] ; 
threads Frame [size] [size] ; 

int main ( int argc, char **argv ) { 

WorkSet. { 
complex A[2l,WS ; 

/ *  initialize test data set * /  

Frame. { 
int KK, LL; 
real RIMAGE ; 

KK = $$ix[Ol-(size>>l) ; 
LL = $$ix[ll-(size>>l) ; 

RIMn.GE = 0; 
if ( 
KK*KK+LL*LL < radius*radius 
) RIMAGE = 1 ; 
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WorkSet. { 
int i=S$i; 
A[O].rr = 
Frame [ i/(size>>l) ] 

A[O].ii = 0.0 ; 
A[1] .rr = 
Frame [ i/(size>>l) ] 

[ i% (size>>l) ] .RIMAGE ; 

[ (i% (size>>l) ) +  (size>>l) ] 
.RIMAGE ; 

A[l].ii = 0.0 ; 
I 

1 

Frame. { 
real RIMAGE ; 

Workset.{ int i=$$i; 
Frame [ i/ (size>>l) ] 

[ i% (size>>l) ] . RIMAGE 
= sqrt( A[O] .rr*A[O] .rr 

+ A[Ol.ii*A[Ol.ii ) ; 
Frame [ i/(size>>l) 3 

[ (i% (size>>l) )+(size>>l) I 
. RIMAGE 

= sqrt( A[1] .rr*A[lI .rr + 
A[l].ii*A[l].ii ) ; 

I 

printf ( "%c%lOg", 
( ($$ix[Ol)?' ':I\n' ) ,  
RIMAGE ) ; 

if (!$Si) printf ( l'\n'r); 
I 

/ *  initialize fft coefficients * /  

WS = Init-FFT ( Frame. ($$Nx[Ol) 1 ;  

/ *  perform FFT * /  

FFT ( A, &WS, Frame.($$Nx[O]) ) ; 

Frame. { 
real RIMAGE ; 

Workset.{ int i=$$i; 
Frame [ i/ (size>>l) ] 

[ i% (size>>l) 3 .RIMAGE 
= sqrt ( A[03 .rr*A[O] .rr 

+ A[O].ii*A[O].ii ) ; 
Frame [ i/ (size>>l) 3 

[ (i% (size>>l) )+(size>>l) 3 
. RIMAGE 
= sqrt ( A[1] .rr*A[l] .rr 
+ A[l].ii*A[l].ii ) ; 

print f ( 'I % c% 1 0 g " , 
( ($$ix[O])?' ':'\nl ) ,  
RIMAGE ) ; 

if (!$Si) printf ( "\n") ; 
} 

/ *  perform inverse FFT * /  

invFFT ( A, &WS, Frame.($$Nx[O]) ) ; 

/ *  clean up result * /  

if ( A[O].rr < le-13 ) A[O].rr=O.O ; 
if ( A[O].ii < le-13 ) A[O].ii=O.O ; 
if ( A[l].rr < le-13 ) A[l].rr=O.O ; 
if ( A[l].ii < le-13 ) A[ll.ii=O.O ; 

Frame. { 
real RIMAGE ; 

Workset.{ int i=$$i; 
Frame [ i/ (size>>l) 3 

[ 1% (size>>l) 3 .RIMAGE 
= sqrt( A[0] .rr*A[O] .rr 

+ A[O] .ii*A[O] .ii ) ; 
Frame [ i/ (size>>l) 3 

[ (i%(size>>l) )+(size>>l) ] 
. RIMAGE 
= sqrt ( A[1] .rr*A[l] .rr 
+ A[1] .ii*A[l] .ii ) ; 

1 

printf ( "%c%lOg", 
( ($$ix[Ol)?' l:l\n' ) ,  
RIMAGE ) ; 

if ( !$Si) printf ("\n") ; 
I 

return 0; 
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